Math. Program., Ser. B (2013) 140:45-76
DOI 10.1007/s10107-012-0626-8

FULL LENGTH PAPER

A stabilized structured Dantzig—Wolfe decomposition
method

Antonio Frangioni - Bernard Gendron

Received: 27 March 2010 / Accepted: 3 May 2011 / Published online: 20 December 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract We discuss an algorithmic scheme, which we call the stabilized structured
Dantzig—Wolfe decomposition method, for solving large-scale structured linear pro-
grams. It can be applied when the subproblem of the standard Dantzig—Wolfe approach
admits an alternative master model amenable to column generation, other than the stan-
dard one in which there is a variable for each of the extreme points and extreme rays of
the corresponding polyhedron. Stabilization is achieved by the same techniques devel-
oped for the standard Dantzig—Wolfe approach and it is equally useful to improve the
performance, as shown by computational results obtained on an application to the
multicommodity capacitated network design problem.

Keywords Dantzig—Wolfe decomposition method - Structured linear program -
Multicommodity capacitated network design problem - Reformulation - Stabilization

Mathematics Subject Classification (2000) 90C06 - 90C25

This paper is dedicated to Claude Lemaréchal at the occasion of his 65th birthday. Like such a large part
of current work in computational nondifferentiable optimization and decomposition methods, our results
would have never been possible without his pioneering work.

A. Frangioni (B<)

Dipartimento di Informatica, Universita di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy
e-mail: frangio@di.unipi.it

B. Gendron

Interuniversity Research Centre on Enterprise Networks,

Logistics and Transportation (CIRRELT), Département d’informatique et de recherche opérationnelle,
Université de Montréal, C.P. 6128, Succ. Centre-ville,

Montreal, QC H3C 3J7, Canada

e-mail: Bernard.Gendron @cirrelt.ca

@ Springer

46 A. Frangioni, B. Gendron

1 Introduction

The Dantzig—Wolfe (DW) decomposition method [14], inspired by an algorithm due
to Ford and Fulkerson [16] for optimal multicommodity flow computations, allows
dealing efficiently with linear programs (LP) having the following general and common
structure:

min, {cx Ax=b, x € conv(X)}. @))

Provided that one can efficiently perform linear optimization over the closed set
X C R”, the idea of DW is that of forming the Lagrangian relaxation with respect to
the m constraints Ax = b and one generic vector 7w of Lagrange multipliers

f(r) = min, {L(x,n):cx+rr(b—Ax) DX EX} 2)
and solving the corresponding Lagrangian dual (equivalent to (1)):
max; {f(rr) 1 ER’"}. 3)

DW decomposition solves the Lagrangian dual with Kelley’s cutting-plane approach
[20,27]. The benefit of DW decomposition is twofold. On the one hand, (1) is usually
solved as a relaxation of a difficult mixed-integer linear program (MILP), and under
appropriate hypotheses, the lower bound computed by the DW approach is stronger
than that of the LP relaxation [3,8-10,21,22]. On the other hand, (2) often decomposes
into a number of smaller independent subproblems (Ax = b are linking constraints),
and the resulting approach can be faster than using ordinary LP technology [10, 16,
18,21,25]. This is particularly so if stabilization [19] is used to devise variants of the
DW approach that are more effective in practice than the non-stabilized cutting-plane
approach [6,26].

We aim at improving the DW approach for the cases where conv(X) has an
appropriate structure: it is a polyhedron whose (possibly “large”) description can be
“conveniently generated piecemeal” with the information provided by solving (2) for
appropriately chosen m (see Assumptions 1-3 below). This is what happens with the
standard DW, which is nothing but a column generation procedure based on a refor-
mulation of conv(X) in a different space of variables, namely the convex (and conical)
multipliers that allow to express any point of conv(X) as a convex (conical) combina-
tion of its exponentially many extreme points (rays). However, different models may
be available which have a rather different structure; for our application (see Sect. 2)
one has “only” pseudo-polynomially many constraints and variables, as opposed to
exponentially many variables, but very few constraints, as in the standard DW model.

Under these conditions, it is possible to construct a convergent algorithm that closely
mimics the DW approach; this has been done for specific applications (see [21] and
the references therein). In this article, we point out that one can develop this idea in
a general setting, which we call the Structured Dantzig—Wolfe (SDW) decomposition
approach. Furthermore, the same stabilization techniques that have shown to be useful
for the standard DW can be applied to SDW. This gives rise to stabilized structured

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 47

Dantzig—Wolfe (S?DW) algorithms, whose convergence can be analyzed with the help
of results in [19], and that can be significantly more efficient in practice. One interesting
feature of the S(*)DW approach is that the subproblem to be solved at each iteration
remains the same; only the master problem changes. Hence, if an implementation
of the DW approach is available for one problem for which an alternative model of
conv(X) is known, then implementing the S(>)DW approach for that problem requires
relatively minor changes to the existing code.

The structure of the paper is as follows. Section 2 presents the application motivating
our study, the multicommodity capacitated network design problem (MCND), and
reviews some of the different forms of decomposition that can be developed for the
problem. With the help of the ideas developed for the MCND, the general SDW method
is presented in Sect. 3, and its relationships with the original DW method are discussed.
Section 4 is devoted to describing how the SDW approach can be stabilized. Section 5
then presents and discusses the results of extensive experiments that demonstrate the
computational interest of SDW by comparing several decomposition methods for the
MCND. Finally, conclusions are drawn in Sect. 6. For the remainder of the paper, v(-)
denotes the optimal value of an optimization problem.

2 Decomposition for multicommodity capacitated network design

Given a directed network G = (N, E), where N is the set of nodes and E is the set of
arcs, we must satisfy the communication demands between several origin-destination
pairs, represented by the set of commodities H. Each & € H is characterized by
a positive communication demand @’ that must flow between the origin s;, and the
destination #5; this is represented by the deficit vector bt = [blh],-e N With bf’ =—1if
i = sy, bf’ =1ifi =15, and bf’ = 0 otherwise. While flowing along an arc (i, j), a
communication consumes some of the arc capacity, which is originated by installing
on the arc any number of facilities. Installing one facility on arc (i, j) € E provides a
positive capacity u;; at a nonnegative cost f;;; a routing cost cff also has to be paid for
each unit of commodity # moving through (i, j). The problem consists of minimizing
the sum of all costs, while satisfying demand requirements and capacity constraints.
By defining flow variables wlhj which represent the fraction of the flow of commodity

honarc (i, j) € E (ie., d" wlh is the actual value of the flow), and design variables
¥ij» which define the number of facilities to install on arc (i, j), the MCND can be
formulated with the following model, denoted I:

min > D> dtwli+ D fijvi 4)

heH (i,j)eE (i, j)eE

Sowlh— D> wh =b ieN, heH (5)
(j.i)eE (i,j)eE

Zdhw,hj < ujjyij (i,j)) e E 6
heH
O<w) <1 (i,j))eE, heH (7
¥ij > 0 and integer (i, j)ek (8)

@ Springer

48 A. Frangioni, B. Gendron

The LP relaxation / of I, obtained by dropping the integrality requirements in (8),
provides rather weak lower bounds (see Sect. 5.3); hence, better formulations are
required to provide tighter bounds.

2.1 Dantzig—Wolfe decomposition

There are different ways to apply decomposition techniques to the MCND (see [10] for
arelated but different problem); here, we focus on the case where the flow conservation
equations (5) are relaxed, a choice motivated by the fact that the lower bound computed
by the corresponding DW approach improves upon v(I), the LP relaxation bound.
Thus, there is one Lagrange multiplier nlh foreachh € H andi € N, and the objective
functionin (2)is (4) with d" c;’j replaced with the Lagrangian cost Ef'j =d" clhj —nih —i—n;.’
(plus a constant cost Th = > y >y T
| E| subproblems, one for each arc (i, j):

bf’). Problem (2) then decomposes into

min Y &lwl + fijyij)
heH
Z d"w; < uijyij (10)
heH
0<w) <1 heH (11)
¥ij > 0 and integer (12)

In other words, (2) is “easy” in this case because it is decomposable, i.e., x = [xk] kekK
and X = @, cx X for a finite set K, where K = E, k = (i, j),

x= s =[[wh] o] an-a2), (13)

and each of the disjoint sets X%/ has a single integer variable. If we relax the integrality
constraint (12), then the optimal continuous solution satisfies yi*j =D heH d" wlhj /uij,

the computation of the optimal [wf’j] nhen being obtained by solving the LP relaxation
of a 0-1 knapsack problem. Now, since the optimal value

vij (i) = fijyij + ming [Zé,’;w{; : (10)—(11>}

heH

is a convex function of y;; (the partial minimization of a convex function is convex),
it is easy to show that the optimal integer solution is either |'yl.*ﬂ or Lyi*jj, whichever
provides the best value of v;;(-) (see [2,21] for details). Despite being easy to solve,
(9-12) does not have the integrality property [20]; thus, DW provides a better
bound than the LP relaxation, i.e., v(1) > v(J) and a strict inequality usually holds
(see Sect. 5.3). Solving (1) by the DW approach corresponds to considering its
reformulation

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 49

ming[c(Zx@x) : A(Z;@):b, ee@] (14)
xeX xeX

where ® = {0 > 0: >’ _x 60 = 1} is the unitary simplex of proper dimension. Prob-
lem (14) can be assumed to be finite-dimensional because only the finite—although
extremely large—set of possible extreme optimal solutions x € X of (2) need to be
associated a convex multiplier 6,. Also, X is compact, for otherwise the extreme rays
would also have to be considered. Then, the DW algorithm is just column generation
in (14): a (small) subset B C X is selected, and the primal master problem

min, {cx cAx=b, xe Xp= conv(B)} (15)

= ming[c(erx) : A(Zx@x)=b, 0 e @B] (16)
xeB xeB

is solved. This is a restriction of (1) where the inner approximation X is used instead
of the original set conv(X). Plugging into (2) the part 7 of the dual optimal solution
to (15)/(16) associated to the constraints Ax = b generates a new solution x € X. It
is easy to prove that either inserting x into B (generating the new variable ;) strictly
improves (enlarges) the inner approximation, or the optimal solution to the current
(15)/(16) is optimal for (14) = (1); iterating this process with minimal care eventually
leads to convergence. In dual terms, the DW method can be described by saying that
the cutting-plane model

fB(r) = min, {cx +7(b — Ax) : x € B} (17)

is an outer approximation of the dual function, i.e., fg > f. Solving (16) corresponds
to fB being minimized instead of f [20]; its optimum 7 is then used as the next point
where to evaluate the “true” f, and the corresponding optimal solution X to (2) either
proves that 7 is optimal for (3), or produces a strictly improved model.

2.2 Disaggregated Dantzig—Wolfe decomposition

It is well-known that in decomposable cases, such as the MCND, a different master
problem can be devised. Indeed, x optimal for (2) means that x = [k ek, Wwhere x*is
an optimal solution to the kth subproblem. Thus, defining the sets BX = {x* : ¥ € B}
one can solve at each iteration a disaggregated master problem

min, chxk : Z Ak =p , Xk e xk = conv(Bk) ke K] (18)
keK keK
whose feasible region has the (much) larger X3 = Qe conv(BX) in place of

conv(B). This is written as (16) except thateach x € Bisassociatedto | K | independent
convex multipliers Gf ,and there are | K | constraints > B fo = 1,oneforeachk € K,

@ Springer

50 A. Frangioni, B. Gendron

instead of one concerning all 8s. In other words, each X ’;3 is an independent inner
approximation of conv(X k), and it is easy to see that, for the same B C X, X Bisa
better approximation of conv(X) than conv(B). Note that such a disaggregated DW
approach is solving the same Lagrangian dual (3) as the aggregated one, as testified
by the fact that the “oracle” computing the dual function f (;r) is exactly the same. The
difference is that the disaggregated approach exploits the (cartesian product) structure
of X tobuild a better master problem out of the same oracle information. The trade-off
is that (18) has | K| times more variables than (15)/(16); however, it also has much
sparser columns and is often less degenerate. Furthermore, (18) uses the available
information more efficiently, which often results in faster convergence, and ultimately
in better overall performances [25].

2.3 Binary reformulation and “Structured Decomposition”

An alternative way to solve (1) for the MCND starts with the apparently unrelated def-
inition of a multiple choice [11,12] binary formulation of the problem. Since f;; > 0,
we have y;; <[> ,cy d"/uij1 = T;j for each arc (i, j). Defining S;; = {1, ..., Tj;},
we can introduce two new sets of variables

1 ifyij =S

0 otherwise ° €Sij,) eE (19)

y;}€{0,1}=[

h Sf oy —
w;; ify;j=s

wi €[0,1] = [seSij, (,j)eE, heH. (20)

0 otherwise

A binary model for the MCND, which we will denote as B+, can be obtained by
replacing the wf’j and y;; variables in (4) and (5) with the new ones by means of the
obvious equations

vip= 2 sy GpeE wh=> wl (.)eE heH

SGS,'/' SGS,‘j

and by replacing (6), (7) and (8) with

(s = Duyyly < D d"wi <suyyl; G, j)€E. seSy 1)
heH

wi <y (i,j)eE, heH, seSj (22)

PR (.j)eE (23)

SES,'.,'

Model B+ is stronger than model /, since its LP relaxation B+ satisﬁe.s' v(B+) >
v(l). In fact, for any_(i, j) € E, (21—23)_is a description of conv(X") [12,21],
which implies that v(B+) = v (1). While B+ has a pseudo-polynomial number of

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 51

variables and constraints, it can be efficiently generated piecemeal using the very same
Lagrangian relaxation as in the (disaggregated or not) DW, and following the same
basic scheme. The idea is again to construct a restriction of the model where only a few
of the y7; and u)lh.s variables, and the corresponding constraints, are present. This master
problem is solved, and, exactly as in DW, the dual optimal variables of the Ax = b
constraints are plugged into (2) to generate a new solution x (= [w, y]) € X. The
difference, analogous to the difference between the aggregated and the disaggregated
DW, lies in how x is used. In this case, one simply checks whether the variables yl‘?j

and wlh; have already been generated for the specific s = y;; and the commodities &
such that u_)lh] > 0. If this is true for all (i, j) € E, then the current optimal solution to

the master problem is optimal for B+; otherwise, some of the missing variables and
of their corresponding constraints are added to the master problem and the process
iterates (see [21] for details). It is clear that the above approach is strongly related
to the DW method. In the next section, we describe a general algorithmic scheme
that encompasses both, with the aim to develop, in Sect. 4, more efficient stabilized
versions.

3 The structured Dantzig—Wolfe decomposition method

The SDW method solves problem (1) provided that the same assumptions as in the DW
approach hold, and some extra knowledge about the structure of conv(X) is available.

Assumption 1 For a finite vector of variables 6 and matrices C, I" and y of appro-
priate dimension, conv(X) ={x =C0 : I'0 < y}.

In other words, one needs a proper reformulation of conv(X) in a different space of
variables 6. We expect the formulation to be “large,” so we require it to be amenable
to solution through column generation. This calls for the next two assumptions, which
use the following notation: B = (B¢, B") is “the bundle”, where B¢ is any subset of
(the index set of) the variables 0 (columns of I" and C), and B” is a subset of (the
index set of) the constraints (rows in I") which impact at least one variable in B€.
Then, 65 [= 63¢] is the corresponding subvector of variables, I’ is the sub-matrix of
I restricted to the columns in 5¢ and the rows in 5", yp [= y5r] is the corresponding
restricted right-hand side, and Cp [= CBC] is the restriction of the matrix (linear
mapping) C to the columns (variables) in 5.

Assumption 2 I'gdg < ygand =[0p, 0] =T06 <y.

Assumption 3 Let x be a point such that x € conv(X)\Xp; then, it must be easy
to update B and the associated I's, yp and Cp to a set B/ D B (which satisfies
Assumption 2) such that there exists B” O B’ with x € Xp.

Assumption 2 means that we can always “pad” a partial solution with zeroes without
losing feasibility. Note that this assumption is automatically satisfied if 5" contains
all rows which impact (at least one of) the variables in B¢; this is what happens in the
DW approach, where there is only one constraint, or at most one for each component

@ Springer

52 A. Frangioni, B. Gendron

(initialize B);

repeat
(solve (25) for &; let ¥ = ¢Z and 7 be optimal dual multipliers of Az =b);
Z cargming { (c—7A)z: 2 € X };
(update B as in Assumption 3);

until ¥ < ¢z + 7(b — AZ)

Fig. 1 The structured Dantzig—Wolfe algorithm

in the disaggregated case. In general, however, one does not want to impose such a
requirement, since the variables can appear in “many” constraints, and one does not
want to generate them all. For instance, in the MCND, each variable yisj is involved in
many constraints (22), and one wants to avoid to generate them all, as much as to avoid
generating all the corresponding flow variables wlh; Actually, one could also avoid to
generate some constraints in 3" that are nominally necessary to obtain Assumption 2,
provided that when solving the master problem (see 25 below), one checks for their
violation, adds the violated constraints and re-solves. This is in fact done in [21] for
constraints (22). However, this is only a technical detail, as these constraints can be
counted as “present” in B". The crucial fact is that Assumption 2 (which clearly holds
for the MCND) implies

Xp={x=Cpop : I'pdp <y} < conv(X) andtherefore
fr(r) =min, {cx +7(b — Ax) : x =CpOR, I'gbg <y} =>f, (24)

i.e., fgisamodel of f.Infact, (24) reduces to (17) when X is defined as in (15)/(16).
This justifies the name “bundle” for 3, since it can still be interpreted as a subset of the
whole information required to describe the behavior of f. Assumption 3 then requires
that, given a point x € conv(X) that cannot be expressed by means of a given B, it
must be easy to update B (Cp, ' and yg) in order to incorporate at least some of the
information provided by x. This is purposely stated in a rather abstract form: one just
has to find out “why” x is not feasible, that is, to find at least one variable that is not in
05 and that is needed to represent it. However, Assumption 3 does not require x € Xpr,
i.e., that enough variables are added to “capture” x. This might require “many” new
variables (and constraints), but x is unlikely to be the optimal solution anyway. For
the algorithm to work, one can as well be content with inserting in 5 at least one of
the “missing” variables; eventually, all the required ones will be generated.
Under Assumptions 1-3 above, the primal master problem (in “explicit” form)

miny g {cx : Ax =b, x = Cpog, I'30B < yB} (25)

has the same “implicit form” (15) as in the standard DW, and can be similarly updated
once (2) is solved; indeed, (25) reduces to (15)/(16) when Xg = conv(BB). Thus, the
structured Dantzig—Wolfe decomposition method (SDW), as described by the pseudo-
code of Figure 1, is “just DW with (25) in place of (16).”

It is reasonably easy to show that, under appropriate assumptions, the algorithm is
correct and finitely terminates; this is due to the fact that at each iteration where the

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 53

algorithm does not stop, “new” information is added to B, and conv(X) only needs
a finite 3 to be completely described. Termination can be proven even if variables
and constraints are (carefully) removed from 5. Furthermore, X does not need to be
compact as apparently required by the above notation. This requires that the master
problem (25) itself is not unbounded below, i.e., (X, 77) exist in the first place, and then
a strengthened form of Assumption 3 to handle the case where f(77) = —oo (see the
Appendix). We do not dwell further upon convergence of SDW, since is it basically
subsumed by the convergence theory discussed in Sect. 4 for its stabilized versions.

The basic ingredients of the SDW approach are the same as in DW: reformulation
and column generation. For DW, however, the reformulation part is standard, and
therefore tends to be overlooked; this is not the case for SDW, where one exploits
information about the structure of conv(X) to construct a better master problem out
of the same information. Clearly, the disaggregated DW (see Sect. 2.2) is the special
case of this approach for the very widespread (and simple) block-separable structure. It
is also useful to remark that similar ideas have been proposed in the column generation
community, where it is well-known that the master problem must have very sparse
columns (8—12 nonzeroes are usually considered the limit; see, for instance, [15]) in
order to avoid degeneracy, and therefore attain good performance. Hence, it is usually
beneficial to replace one dense column with several sparse ones. Examples of this
idea include replacing a single tree with all the paths from the root to the leaves
in multicommodity flows [25], and replacing long paths by shorter ones linked by
flow conservation constraints in the master problem of vehicle routing problems [29].
Another related approach is that of dual-optimal inequalities, described below. SDW
goes further in the direction of exploiting the data generated by solving (2) “at a finer
granularity” than just making each solution a column. This is confirmed by the fact
that, for the MCND, columns in the master problem of the standard DW can have as
many as 2|N||H| 4+ 1 nonzeroes (two for each wl.hj > 0, corresponding to the flow
conservation constraints of i and j, plus one in the convexity constraint), while those
in the disaggregated DW can have at most 2|H| 4+ 1 nonzeroes. The yfj columns
in the master problem of SDW have no more than |H| + 2 nonzeroes, and the wf’js
columns have exactly 5 nonzeroes; thus SDW has significantly sparser columns than
DW, disaggregated or not.

Given the availability of efficient and well-engineered linear optimization software,
SDW is not significantly more difficult to implement than DW. However, as for the
latter, several nontrivial issues have to be addressed.

Initialization. In order to be well-defined, the SDW method needs a starting B
such that (25) has a solution. From the dual viewpoint, the infeasibility of (25)
means that no optimal multipliers 7 exist: the dual is unbounded. Avoiding this
is in general nontrivial, and requires something akin a “Phase 0” approach where

min, {||Ax —b|| : x € Xp}

(for a proper norm) is solved at each iteration instead of (25) until a 3 which provides
a feasible solution is found, or (1) is proved to be infeasible. This can sometimes be
avoided by exploiting the structure of X: for the MCND, one can simply find the

@ Springer

54 A. Frangioni, B. Gendron

optimal solution of I (the LP relaxation of formulation 4-8) and initialize 3 in such
a way that at least that solution is feasible for (25).

Instability. As in the standard DW case, the sequence of dual solutions {77} cannot be
expected to have—and does not have, in practice—good “locality” properties: even if
a good approximation of the dual optimal solution 7 * is obtained at some iteration, the
dual solution at the subsequent iteration may be arbitrarily far from optimal (see, for
instance [6,20,27]). This instability is one of the main causes of its slow convergence
rate on many practical problems.

All this suggests to introduce some mean to “stabilize” the sequence of dual itera-
tions, exploiting ideas originally developed in the field of nondifferentiable optimiza-
tion [19] and recently applied to column generation [6]. It is interesting to remark
that, while perhaps the most straightforward, that approach—described in the next
Section—is not the only possible one. An alternative is that of dual-optimal inequal-
ities [1,7], that is, inequalities in the dual space (columns in the primal) cutting away
parts of the feasible region of (3) without eliminating all dual optimal solutions. The
primal interpretation of this process is particularly relevant for our discussion: what
one does is to reformulate the model adding “useless” columns. For instance, in cutting
stock problems [7] dual-optimal inequalities correspond to columns which basically
state that each item 7 in a cutting pattern can be replaced by a given subset of items
whose combined weight is not larger than that of i. In multicommodity flow prob-
lems [1], dual-optimal inequalities are cycles which allow to redirect the (aggregated)
flow from one arc along a different path. These columns are not necessary to build an
optimal solution, if all “normal” columns are present. However, in a master problem
where the set of columns is by definition (severely) restricted, the addition of a small
set of these columns allow to greatly increase the part of the feasible space of the
original problem that can be represented, thereby (hopefully) allowing to generate the
optimal solution much faster. Again, the concept is that it can be beneficial to modify
the master problem in order to allow the information carried by a given set of “normal”
columns to be “mixed and matched more freely” than it is possible in the standard DW
approach; the increase in the size of the master problem can be largely compensated
by the improvement in the convergence speed (note that dual-optimal columns are
usually very sparse as well).

4 Stabilizing structured Dantzig—Wolfe decomposition

In order to avoid large fluctuations of the dual multipliers, a “stabilization device” is
introduced in the dual problem. This is done by choosing a current center 7, a family
of proper convex stabilizing functions D, : R" — R U {400} dependent on a real
parameter ¢ > 0, and by solving the stabilized dual master problem

maxy {f3(7) = Dy(m — 7))} (26)
at each iteration. The optimal solution 77 of (26) is then used to compute f(77) as

in the standard scheme. The stabilizing function D; is meant to penalize points “too
far” from 7; at a first reading a norm-like function can be imagined there, with more

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 55

details to be given soon. Other ways to stabilize the cutting-plane algorithm have been
proposed; a thorough discussion of the relationships among them can be found in
[24,27].

Problem (26) is a generalized augmented Lagrangian of (15), using as augmenting
function the Fenchel conjugate of D;. For any convex function (), its Fenchel
conjugate ¥*(z) = sup, {zm — ¥ ()} characterizes the set of all vectors z that are
support hyperplanes to the epigraph of v at some point. The function ¥ * is closed and
convex, and has several other properties [19,24]; here, we just recall that, from the
definition, ¥ *(0) = —inf; {y¥ (;r)}. In our case, we obtain the well-known result that
the Fenchel conjugate of a dual function is the value function of the original problem.
In fact,

(/)@= sup {zm + fB(1)}
= sup {min {cx + m(z+b— Ax) : x € Xp}} (27)
T
= miny {cx 1 z=Ax — b, xeXB} (28)
where the last equality comes from standard results in Lagrangian duality [24]: (27) is
the Lagrangian dual of (28) with respect to the “perturbed” constraints 7 = Ax —b. We

can then compute the Fenchel dual [24] of (26), which is obtained by simply writing
down (— f)*(0); after some algebra, this can be shown to result in

min; {(—fB)*(2) — 7z + D (—2)}
which, plugging in the definition of f3, gives
min; {cx—ﬁz+Df(—z) cz=Ax—b, x EXB}. (29)

The stabilized primal master problem (29) is equivalent to (26); indeed, we can assume
that whichever of the two is solved, both an optimal primal solution (X, z) and an
optimal dual solution 7 are simultaneously computed. For practical purposes, one
would more likely implement (29) rather than (26); however, the following proposition
shows how to recover all the necessary dual information once (29) is solved.

Theorem 4 Let (x,Z) be an optimal primal solution to (29) and 7 be optimal
Lagrange (dual) multipliers associated to constraints z = Ax — b; then, 7 is an
optimal solution to (26), and fp(w) = cx + 7 (b — AX).

Proof Because 7 are optimal dual multipliers, (X, Z) is an optimal solution to

ming {cx — 724+ Df(—z) +7A(z— Ax+b) : x € XB}.
That is, z € argmin {(# — @)z + D;j(—z)}, which is equivalent to 0 €
(7 —) - +D; (—-)1(2), which translates to 0 € {7 — 7} — 9D/ (—z), which finally

yields 7 — 7 € 9Dj(—Z). Furthermore, since X € argmin, {cx + 7 (b — Ax)
x € Xp}, one first has fg(w) = c¢x + 7 (b — AX) as desired. Then, because X is

@ Springer

56 A. Frangioni, B. Gendron

(Initialize 7 and t ; solve P, initialize B with the resulting T)
repeat
(solve (29) for Z; let 7 be optimal dual multipliers of z = Az — b);
if(c2=f(7) & Az =0) then STOP;
else z € argmin, { (c—7A)z:z € X }; f(7) = cT + 7(b — AZ);
(update B as in Assumption 3);
if(f(7) is “substantially better” than f(7))
thenm =7
(possibly update t)
until STOP

Fig. 2 The stabilized structured Dantzig—Wolfe algorithm

a minimizer, b — AX is a supergradient of the concave function fg; changing sign,
—(b — Ax) = 7 € 0(— fB) (7). The desired results now follow from [19, Lemma 2.2,
conditions (2.2) and (2.3)] after minor notational adjustments (— f3 in place of [,
7 — 7 in place of d*). O

Using D, = % II- ||%, which gives D} = %t B ||%, one immediately recognizes in (29)

the augmented Lagrangian of (15), with a “first-order” Lagrangian term correspond-
ing to the current point 7 and a “second-order” term corresponding to the stabilizing
function D;. Using a different stabilizing term D; in the dual corresponds to a non-
quadratic augmented Lagrangian. The “null” stabilizing term D; = 0 corresponds to
D} = IL; that is, with no stabilization at all, (29) collapses back to (15)/(25). This
is the extreme case of a general property, that can be easily checked for varying 7 in
the quadratic case; as f < g = f* > g*, a “flatter” D, in the dual corresponds
to a “steeper” Dj in the primal, and vice-versa. Also, note that the above formulae
work for X = X as well, i.e., for the original problems (1)/(3) rather than for their
approximations.

The stabilized master problems provide means for defining a general stabilized
structured Dantzig—Wolfe algorithm (S?DW), such as that of Fig. 2.

The algorithm generates at each iteration a fentative point 7 for the dual and
a (possibly infeasible) primal solution x by solving (29). If x is feasible and has a
cost equal to the lower bound f (77), then x and 7 are clearly optimal for (1) and (3),
respectively. In practice, one can stop the algorithm when cx +7 (b — AX) — f(7) > 0
and ||AXx — b|| (with any norm) are both “small” numbers; we use

cX + (b — AX) — f() +t*||AX — b|| < ef (7) (30)

where the norm is chosen to match the stabilizing term (see Sect. 4.2), ¢ > 0 is
the relative accuracy required to the function value (1e-6 in our tests), and #* is
an appropriately chosen factor, depending on the scaling of the dual function f, that
weights the relative contribution of the constraints violation. The rationale of (30) is
that it is usually fairly easy to find a value for * which is both “reasonably small” and
correct, in the sense that 7 is actually e-optimal at termination; this value is typically
quite “stable” within instances of (1)/(3) generated in the same way.

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 57

If (30) is not satisfied, new elements of 3 are generated by using the primal solution
X obtained by solving (2) at the tentative point 7. If f(77) is “substantially better” than
f (), then it is worth to update the current center; this is called a Serious Step (SS).
Otherwise, the current center is not changed, and we rely on the fact that 3 is improved
for producing, at the next iteration, a better tentative point 77 ; this is called a Null Step
(NS). In either case, the stabilizing term can be changed, usually in different ways
according to the outcome of the iteration. If an SS is performed, i.e., the current
approximation fp of f was able to identify a point 7 with better function value than
7, then it may be worth to “trust” the model more and lessen the penalty for moving far
from 77; this corresponds to a “steeper” penalty term in the primal. Conversely, a “bad”
NS might be due to an excessive trust in the model, i.e., an insufficient stabilization,
thereby suggesting to “steepen” D, (= “flatten” D;).

When f3 is the standard cutting-plane model (17), the above approach is exactly a
(generalized) bundle method [19]; thus, S2DW is a bundle method where the model
/5 is “nonstandard.” Note that the bundle method exists in the disaggregated variant
for the decomposable case using the stabilized version of (18) as master problem
[3,9]; already in that case fg is not the cutting-plane model, but rather the sum of | K|
independent cutting-plane models, one for each independent Lagrangian function.
SZDW can be seen as only carrying this idea to its natural extension by using an “even
more disaggregated” (specialized) model in place of the standard cutting-plane one(s).

4.1 Convergence conditions

The S?DW algorithm can be shown to finitely converge to a pair (77*, x*) of optimal
solutions to (3) and (1), respectively, under the following conditions:

(i) Dy is a convex nonnegative function such that D, (0) = 0, its level sets Ss(D;)
are compact and full-dimensional for all § > 0; remarkably, these requirements
are symmetric in the primal, i.e., they hold for D} if and only if they hold for D,
[19].
(ii) D; is differentiable in 0 and strongly coercive, i.e., limz =00 Di(m)/lI7|l =
+o0; equivalently, Dy is strictly convex in O and finite everywhere.
(iii) For some fixed m € (0, 1], the condition

f@) = f(@) = m(fB(7) — f(7@)). 3D

is necessary for an SS to be declared. The condition is also sufficient at length;
that is, one can avoid to perform an SS if (31) holds, but only finitely many times.

(iv) During an infinite sequence of consecutive NSs, f () must be computed and B
updated as in Assumption 3 infinitely many times.

(v) t is bounded away from zero (f > ¢ > 0), and during a sequence of consecutive
NSs, t can change only finitely many times.

(vi) Dy is nonincreasing as a function of ¢, and lim;_.», D;(r) = 0 for all 7, i.e., it
converges pointwise to the constant zero function. Dually, D; is nondecreasing
as a function of # and converges pointwise to /(o).

@ Springer

58 A. Frangioni, B. Gendron

Under the above assumptions, global convergence of S?DW can be proven, mostly
relying on the results of [19]. The only delicate point is the treatment of 3 along the
iterations. In fact, the theory in [19] does not mandate any specific choice for the
model apart from fg > f, thereby allowing the use of (24). However, the handling
of B (called “B-strategy” in [19]) requires some care. The basic requirement is that
it is monotone [19, Definition 4.6]: this means that at length, during a sequence of
consecutive NSs

(—fB)"(@) = (= fB)*@) (32)

where B+ is the bundle at the subsequent iteration. From (28), it is clear that (32) can
be obtained with some sort of monotonicity in B; trivially, by never removing anything.
One can do better, allowing removals from B as long as “the important variables” are
left in; this is stated in the following Lemma, whose proof is obvious.

Lemma 1 A sufficient condition for (32) to hold is that (for any sequence of NSs, at
length) the bundle B has the following property: the optimal solution X to (29) at any
step is still feasible for (29) at the subsequent step, i.e., with bundle B+.

Hence it is only necessary to look, at each iteration, at the optimal value 6 of
the “auxiliary” variables in the current definition of Xp; all the variables with zero
value can be discarded. However, convergence requires more than just non-descent,
which in turn requires a slightly “stronger grip” on B (see Lemma 2). Furthermore,
there is one minor but noteworthy aspect that does not allow to use the results of
[19] directly. Indeed, a significant part of the convergence of bundle methods hinges
on the assumption that “frequently enough,” once f is computed at the trial point
7, the model fi. at the following iteration must take into account the corresponding
subgradientb — AX = z € 3f (), inthe sense that %, (z) < f*(2) [19, (4.iv)]. In the
standard DW case, this is easily obtained by adding z to I3, but in our case, this is not,
in general, true. Indeed, in accordance with Assumption 3, (iv) above is weaker than
[19, (4.iv)], in that it is not required for the model at the next iteration to be capable of
entirely representing x (and hence 7), but only to be “at least a little bit larger.” This
is discussed in some details in the Appendix, where a sketch of convergence results
for the method is presented. The concept is discussed here in order to be able to bring
about a related interesting point: that of aggregation. In general, monotonicity only
requires that the optimal solution (X,) to (29) remains feasible at the subsequent
iteration. When using the standard cutting-plane model (17), there is a particularly
simple way of attaining this: it suffices to add x to B, possibly removing every other
point. Indeed, the linear function f;(7) = cx + w(b — AX) is a model of f, since
X € X C X, and therefore 7 = b — Ax is feasible to (29). While such a harsh
approximation of f is contrary in spirit to the S>DW approach, it is worth remarking
that under mild conditions, performing aggregation is possible even with a different
model than the cutting-plane one. The idea is to consider fz = min{fg , f:}, where
f5 is (24); this is clearly a model, as f < f; and f < fgimply f < fg, and fg is
“at least as accurate” as f. A little conjugacy calculus [24] then gives

epi (—fB)* = cl conv(epi (—fB)" , epi (—f?)"),

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 59

where it is easy to verify that (— f;)*(z) = ¢x if z = AX — b, and (— f3)*(2) = +©
otherwise. Thus, the epigraph of (— fz)* can be constructed by taking all points (in the
epigraphical space) (z/, (— fg)*(z’)) and computing their convex hull with the single
point (AX — b, cX), as 7/ = AX — b is the only point at which (— f5)* is not +o00. The
function value is then the inf over all these possibilities for a fixed z, i.e.,

()" @=min.,, {p /)" &)+ (1= p)cF : 2=p7'+(1=p)(AF~b),p € [0, 11}.

Therefore, the stabilized primal master problem (29) using model £ is

pcx’ + (1 — p)ek — wz + Df(—2)
minz’z/’x/y%ip Z/ = A_X/ — b, x/ = CBQE’ FBQ/B < VB
z=p7 + (1 = p)(AX —b), p €0, 1].

We can apply simple algebra to eliminate z’, but this still leaves ungainly bilinear
terms px’ in the problem (the terms (1 — p)cX and (1 — p)(AX — b) pose no problem
instead, as x is a constant). However, provided that { 0 : 'O < yg } is compact,
these can be effectively eliminated by the variable changes x = px’ and 0 = ,0623,,
which leads to

ex + (1= p)ex —wz+Df(—2)
ming v g5 p 1 X = CBOB. I'BOB < pyB (33)
Z=Ax+(1_p)A2_b9 pE[O,]]

The problems are clearly equivalent: from the compactness assumption, {63
I'gbp < 0} = {0}, and therefore p = 0 = 03 = 0 = x = 0 as expected. When
o > 0 instead, one simply has x’ = x/p and 923 = 0/ p, and the equivalence follows
algebraically. The master problem therefore needs very little and intuitive modification:
the new variable p is a “knob” that allows either picking the fixed solution x (p = 0),
or any solution in X5 (p = 1), or “anything in between”. Note that, for the purpose
of finite termination, performing aggregations is dangerous: if x is allowed to change
at each iteration, the set of all possible models fB is not finite. Thus, one has (at least
in theory) to resort to something like a safe S-strategy [19, Definition 4.9], which is
simply one where the total number of aggregations is finite (however this is obtained).

Convergence can also be obtained under weaker conditions. For instance:

— Strong coercivity in (ii) can be relaxed provided that, as in the non-stabilized case,
B is “sufficiently large” to ensure that (29) has at least one feasible solution. This
actually provides a possible use for (33) in case one knows some X € conv(X)
such that AX = b; this guarantees that p = 1, 0p = 0, x = z = 0 is feasible for
(33). Dually, (26) is always bounded above since fB < f; = cx.

— Using stabilizing terms that are not smooth at zero is possible provided that D; — 0
(pointwise) as the algorithm proceeds; basically, this turns S2DW into a penalty
approach to (1), as D} — Ijg;. In this case, it is also possible to limit changes of
the center 77, up to never changing it.

@ Springer

60 A. Frangioni, B. Gendron

— Constraints on the handling of ¢ can be significantly relaxed, up to allowing it
to converge to zero, provided that D, is “regular enough” as a function of ¢; for
instance, D; = (1/t)D for some D satisfying (i) and (ii) (see the Appendix for
details).

— The descent test (31) can be weakened by using v(29) in place of fp(7) — f(7),
making it easier to declare a SS.

The reader interested in these details is referred to [19]. Although not the most gen-
eral, the above scheme is already flexible enough to accommodate many algorithmic
variants that have proven to be useful in some applications:

— (iii) allows staying at 7w even if a “sizable” ascent could be obtained (only provided
that this does not happen infinitely many times); this allows for alternative actions
to be taken in response to a “good” step, e.g., increasing r = “flattening” D, .

— (iv) allows solving (2) at other points than 7, or not adding the resulting items to
B, at some iterations; this is useful for instance to accommodate a further search
on the dual space “around” 77, such as a linear or curved search.

— (v) allows a great deal of flexibility in managing the stabilizing term; the only
requirement is that it “never becomes too steep” (but imposing a fixed lower bound
on t may not be necessary; see the Appendix) and that changes must be inhibited
at some point during very long sequences of NSs. This allows for many different
actual strategies for updating ¢, which are known to be important in practice.

4.2 Choice of the stabilizing terms

The S?’DW algorithm does not depend on the choice of the stabilizing term D;, provided
that the above weak conditions are satisfied. Indeed, (29) shows that the choice of D;
only impacts the D} (—z) term in the objective function, allowing for many different
stabilizing functions to be tested at relatively low cost in the same environment. A
number of alternatives have been proposed in the literature for the stabilizing function
D; or, equivalently, for the primal penalty term D;. In all cases, D is separable on the
dual, and therefore D;" is such on the primal, that is,

Dy () =) Wi(m) Df(2) = D ¥ ()
i=1 i=1

where ¥, : R — R U {400} is a family of functions. We experimented with two
simple versions: ¥; = I, which establishes a trust region of radius ¢ around
the current point (“BoxStep”), and ¥; = 2it(-)2 (“proximal bundle”). From the dual
viewpoint, these correspond respectively to the linear penalty ¥* = t| - | and the
quadratic penalty ¥ = %t(~)2. Actually, the treatment could be easily extended to
the case when the stabilizing term depends on multiple parameters instead of just one,
such as in [6], but we kept one single parameter ¢ for simplicity.

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 61

5 Computational experiments

All experiments were performed on a single CPU of a computer with 16 Intel Xeon
X7350 CPUs running at 2.93 GHz and 64 Gb of RAM, running Linux Suse 11.1. All
the LPs have been solved with CPLEX 11.1.

5.1 Residual capacity inequalities

We start by remarking that an entirely different approach for improving the lower
bound v(I) attains the same result as the decomposition ones. This is based on devising
valid inequalities which cut out some of the fractional solutions of I;in particular,
the residual capacity inequalities [2,28] consider separately any single arc (i, j) € E.
Thus, in the derivation that follows, for notational simplicity, we drop the arc index. Let
at = dh/u and, for any subset P C H of the commodities, define df = Zhep d",
af =dP ju, q¥ = [a’7,and r* = a® — |a”]; the corresponding residual capacity
inequalities can then be written as

> d"a—wh=r"g" —y. (34)
heP

These inequalities are valid and easy to separate for any given [w, y], where y is
fractional: one simply defines P = {h € H : w" > 5 — | 7]} and checks if

5l <a” <[5 and D a" (1—" = [51+7) + LFI(IF] - 9) <.
heP

If so, then (34) corresponding to this P is violated, otherwise there are no violated
residual capacity inequalities. Adding all the (exponentially many) inequalities (34)
to I produces a (much larger) model 7+ whose continuous relaxation I+ is “equiva-
lent” to the DW (and therefore to the SDW and SzDW) approach(es) in the sense that
v(I+) = v(B+) = v (1) (see [21] for details). This approach can be easily imple-
mented using the current, efficient, off-the-shelf MILP solvers, and it has been proven
to be competitive with (the non-stabilized) SDW on some classes of instances [21].

5.2 Summary of algorithmic approaches

A remarkably large number of different algorithmic approaches exist for computing
the same lower bound:

1. the DW approach applied to the original model I, either in the aggregated or in
the disaggregated form;

2. the Stabilized DW (also known as bundle method) approach applied to the original
model 7, again in the two possible aggregated or disaggregated forms;

3. the Structured DW approach applied to model B+;

@ Springer

62 A. Frangioni, B. Gendron

4. the Stabilized Structured DW approach applied to model B+;
5. the completely different cutting-plane algorithm in the primal space, using residual
capacity inequalities, applied to solve 7+.

All these approaches provide the same lower bound, and all, except the last one, obtain
that by, in fact, maximizing the very same dual function defined by (9-12). Yet, while
being (almost) all based on the same idea, they have surprisingly little in common,
apart from the fact that all of them consider some “very large” reformulation of the
original problem. The underlying reformulations have either very many columns and a
few rows, or very many rows and relatively few columns, or an “intermediate” (albeit
still very large) number of both rows and columns. The problems to be solved at each
iteration may be either LPs or QPs, and be either very specially structured (so as to
allow specialized approaches [17]) or rather unstructured. Implementing them may
require little more than access to a general-purpose LP solver, such as in the case of
5 where the dynamic generation of rows can be handled by the standard callback
routines that are provided for the purpose. Other cases, such as 2, can be solved by
general-purpose bundle codes such as that already used with success in several other
applications [10,22,23]. Yet, other cases, such as 3 and 4, require development of
entirely ad-hoc approaches. The algorithms may either be basically “fire and forget,”
or require nontrivial setting of algorithmic parameters. In particular, for stabilized
approaches, the initial choice of 7 and the management of # can have a significant
impact on performances. Regarding the first, # = 0 is the standard choice at the first
iteration; however, for the MCND, better options exist. For instance, one may solve
the | H| separate shortest path problems corresponding to constraints (5) and (7), with

dhclhj + fij/uij as flow costs; this corresponds to solving the LP relaxation /, and

produces node potentials ﬁih which can be used as starting point. Alternatively, or in
addition, a few iterations of a subgradient-like approach can be performed to quickly
get a better dual estimate. This has been tested, because for some applications the
choice of the starting point has been shown to have substantial effects on the impact of
stabilization on the performances of the algorithms. Indeed, for “simple” problems, a
good warm-start can make stabilization almost useless [6], and since the focus of this
paper is on stabilization, it is relevant to computationally test to what extent this is (or
not) the case.

For non-stabilized approaches, the choice of the initial point is known [6] to have
little impact on the performances. This is largely true also for the stabilized DW solved
by the standard bundle code, which typically requires many steps anyway, and can
usually recover a solution at least as good as the one provided by the initialization in a
small fraction of these. Furthermore, several sophisticated approaches for the critical
on-line tuning of ¢ [18, I.5] have been devised which helps keep ¢t “large,” thereby
allowing “long steps” and fast convergence, whenever 7 is “far” from the optimum,
while 7 is reduced to enhance the locality properties as the optimum is approached.
By contrast, S?DW terminates in far fewer iterations, each one being significantly
more costly due to the larger master problem; therefore, the choice of the initial 7 can
have a larger impact on performances. Hence, apart from the shortest path warm-start
(which can be used by default, since it is very inexpensive), we tested a two-level
warm-start where the shortest-path-produced 7 is further enhanced by a few iterations

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 63

of a subgradient method. Furthermore, the 7-strategies are not entirely straightforward
to implement within the S’DW setting, especially when the stabilizing term is not the
standard quadratic one; hence, for SZDW, we kept ¢ fixed throughout to a hand-tuned
value depending on the choice of the initial point. The tuning was done among a few
choices, and kept fixed for all instances in the same class. As expected, the “best” t is
typically smaller for the two-level warm-start than for the shortest path warm-start.

All the approaches compute the same lower bound to the optimal value of the
MCND, but of course this is mostly relevant as a step towards finding the optimal—
or at least a provably good—solution to the original integer problem. It is therefore
interesting to gauge “the quality” of the “partial” model generated by each approach
at termination. To do that, we heuristically solved each of the corresponding MILP
models by running CPLEX for one hour with the polishing option. This was done for
all models except the ones generated by the DW approaches, which anyway, as we
will see shortly, are not competitive with the others (see [30,31] for ways to derive
integer solutions from DW methods). Note that, of all partial models obtained by the
different approaches, only the MILP formulation derived from /4 is guaranteed to
contain an optimal solution to 7; for all the others, some columns needed to represent
any optimal integer solution might not be in the model.

5.3 Computational results

The experiments have been performed on 88 randomly generated problem instances,
already used in [21], to which the reader is referred for more details. The instances are
divided into three classes, “medium,” “large” and “huge,” with (| N|, | H|) respectively
equal to (30, 100), (20, 200), and (30, 400). For each class, 8 instances were generated,
each with 4 different values of the parameter C = |E|(X ey d")/ (X j)ek if)-
When C = 1 the average arc capacity equals the total demand and the network is
lightly capacitated, while it becomes more tightly capacitated as C increases.

We first ran an initial set of tests on a subset of the instances to get an assessment
of the effectiveness of each approach and to tune the algorithmic parameters where
necessary. From these tests, we could conclude that:

— As expected, due to its instability, the standard (non-stabilized) aggregated DW
method could not reach the relative precision of 1e-6 in reasonable time, dra-
matically tailing off and effectively stopping to converge while still far from the
expected value. Unlike in other applications [25], turning to the disaggregated
model did not substantially change the outcome.

— Not even the stabilized aggregated DW approach could reach convergence in rea-
sonable time; while the method was indeed converging, the speed was exceedingly
slow. This could be expected in view of the results on a similar problem [10]. How-
ever, unlike in the non-stabilized case, the disaggregated variant improved things
very substantially, resulting in a workable solution.

— The SDW method was always workable, although rather slow for very large
instances. The S2DW worked well, but there was no clear dominance between the
quadratic stabilization (¥; = 1/(2t) (1)?) and the linear stabilization (¥, = J[EN
thus we had to experiment on both.

@ Springer

64 A. Frangioni, B. Gendron

We then ran a complete set of tests on the remaining approaches, i.e., the pri-
mal cutting-plane approach using residual capacity inequalities to solve model 7+
(denoted by “PCP”), the disaggregated stabilized DW method on the integer model
I (denoted by “StabDW”), the non-stabilized SDW method on the binary model B+
(denoted by “StructDW™), and three versions of the S?’DW method on the binary
model B+: with quadratic stabilization (denoted by “S>DW,”), with linear stabiliza-
tion (denoted by “S2DW,,"), and with linear stabilization and two-level warm-start
using the subgradient method (denoted by “S?DW ,—ws>”). In all approaches, the
added columns (and the added rows, for PCP) are never removed, nor aggregated. The
results are shown in Tables 1, 2, 3. For each instance, we report the improvement (col-
umn “imp”), in percentage, between the “weak” lower bound v(/) and the “strong”
lowerbound v = v(I+) = v(1) = v(B+),computed as imp = 100x (v—v(I))/v([).
To compare the approaches, we report total CPU times (column “cpu”); we remark
that all the approaches spend basically all the time in the master problem, with the
solution of the Lagrangian subproblem always taking less than 1 % of the time, and
as little as 0.01 % for the largest instances. With the exception of StabDW, we also
report the gap in percentage (column “gap”) between the upper bound, v, obtained by
performing CPLEX heuristics on the MILP model derived for each approach, and the
lower bound: gap = 100 x (v — v)/v. For all approaches, we report the total number of
iterations (column “it”); for S2DW, we also report the number of SSs (column “ss”).

For the 32 medium instances (Table 1), the StabDW approach is the fastest for eight
instances (the easier ones to solve for all approaches), it is somewhat competitive for
six other instances, but loses badly—due to a very large number of iterations—for all
the others. The SDW approach is often the best for small values of C, but suffers a
significant degradation of performances (up to five-fold) as C grows from 1 to 16,
making it less competitive for the largest values of C. The quadratic stabilization in
SZDW does not always translate into fewer iterations than the non-stabilized method,
although this does indeed happen for C = 16; however, the cost of solving the quadratic
master problem with CPLEX is very high, especially for some instances, making it
very unattractive. We remark here that both the active-set (“simplex”) and interior-
point (“barrier”) algorithms of CPLEX have been tested, with the former proving
(as expected) more efficient due to its better reoptimization capabilities; yet, this
was not sufficient to achieve good performances. The linear SDW is worse than the
quadratic one in iteration count, but much better in running time. Furthermore, it is
much more stable than the non-stabilized SDW as C grows; while the latter is usually
faster for C < 4, the reverse happens for C > 8. The effect of the two-stage warm-start
is somewhat erratic for these instances, seldom being of any use in terms of CPU time;
however, the gaps (where nonzero) are most often substantially reduced. The PCP
approach is generally comparable to SDW , in performance, often (but not always)
being better; yet, in terms of gap, S’DW, clearly dominates, especially for the most
“difficult” instances where the final gaps are larger.

The trends seen for the medium instances are confirmed and amplified in the large
ones (Table 2). The (disaggregated) stabilized DW requires more than 100,000 iter-
ations on average, and therefore is typically very slow. The non-stabilized SDW
suffers the same sharp degradation of performance as C increases, with almost an
order of magnitude difference in one case. A completely opposite trend, barely

@ Springer

65

A stabilized structured Dantzig—Wolfe decomposition method

¢l Iy T00 98 OI ¢ TO0 806 €l 9T T00 9¢gee LT T00 €901 €08 or'e €l 200 S09 €cer 91

¢l Ty 000 ISL €I Ss€ 000 ¢TLL €l ¥C 000 LELE € 000 869 €CL 90°¢ ST 000 069 €e’Ls 8

€ 1€ 000 Ov8 €I ¥€ 000 60°L 91 0¢ 000 ¥LOS 0¢ 000 SL9 LS9 LT ST 000 869 8099 ¢

€€ ¥S 000 8L€T 91 OF 000 L98 €l 9C 000 <cLov 61 000 VoV 39 woC ¥l 000 LT9 cryL 1T 699

6l 05 €51 €Cell 0 19 9L T 9LT91 ¥I OF LOS OE€V¥SIOL OL v6'¥y CTI'ISS #8196 LSILIT 81 TLY 66°SI1 8965 91

IC 08 Tyl LI'VCL ST T9 8E€CT C6'991 CI 1€ Ov'v P$9CSLS L9 1€y L9PSE CST099 89°€C8C 0T 96'¢c 107161 00¢6 8

9¢ Iy 6¢1 OF'l6 OF oL ¢e¥'C TCSIT SI 68 Tev Svesyd o6t SI'v 0€LPL 6CCS9 1€66LC 9T L8E 006l ¥87CCl Vv

IL S8 ¢€¥'1 TETTT LS IL 95T +v6'+v0CT €1 T 10% 88T08S 09 OLY TT88L 00569 8I1'668C €T S6'€ TOOFI 61'SST 1 LIS

8 61 €0 €8¢ €I 9¢ TS0 899 €l LT €L'0 vO'ST 6C 690 9178 LLLE S9°€EE 81 690 *¥LY 61°¢E 91

yI 1€ €00 ¢¥S Ol 9T €00 9TY IT 1T €00 ¢T6'6 §C €00 90°S 8311 £r'8 7 €00 9IS sy 8

0l T €00 L6t Tl €€ €00 687 ¢l TC €00 966 IT €00 L6'€ 60S1 LS8 IT €00 987 89'1S ¥

¢c s €00 ve8 <l S €00 0g¢ ¢l 8T €00 8911 IT €00 ¢€L'e 6161 80°6 Ic ¢Io 08v 999¢ I LIS

81 0OF TS1 6S8IT IT 09 8LT +C061 81 €7 809 06¢€C0LC L8 SF9 OF8CIl IS9IL [IL'GI0E 1T 0CT9 <Cl'6¥Cc 6¥'09 91

Ly S9 v¥'1 169LC ¥€ ¥9 0OL'C 886LC ¥I LE O9I'L 0CTOLICC 19 119 ¥I'€€9 L0888 o61'¥SOy 1T CI'9 ¢€€¢s0e 80001 8

09 69 8Y'1 6869C ¥S OL <CTLT ¥E€86C CI Ly L8S OLT60LT ¥ 8¥'L €I'CTIE 06€6L €185 ST TH9 TOC9e TT8el V¥

¥8 16 CS'T 8ELSE 86 99 L6'C <TTelC SI IS LS9 0008¢91 SS 69 0£96C PvPISY I¥'ecey 9T 8L'S 8I'8E 00°L8T T LIS

€l T TY0 T8 €1 LE €0 16T €1 LT €0 9€96 ¥ €0 086l wLe LO9Y 0C €0 9TI1l 10¢y 91

€l 1€ 600 €08 TI S€ 600 6S€6 ¢l € 600 0919 IZ 0I'0 808 g6SE €8°0¢ ¥Z 600 6911 9%'8S 8

81 TF 600 OI'IT SI 6¢ 600 1801 €I 1€ 600 80L6 I 0I'0 0L9 909¢ 06'I¢ 0C 600 658 6089 ¥

§¢ 6¢ 600 ILTT SI ¢ 600 L8O II LT 600 +E6L §¢ 010 8I'L 9¢se ¥I'lE IC vI'0 €£6 869L I LIS

ss 3 dep nd)y ss 3 dep nd)y ss 3 dep nd) 31 dep nd) b | nd)y 31 dep nd) dury o |yl
SO MALS CMd.S IMA,S Ma»wnng maqess dod wo[qold

SQOUBISUT WNIPAW 0] SINSAY | JqeL,

pringer

as

A. Frangioni, B. Gendron

66

8C 9% 8¥0 TOE9 TC 6F 080 LE8Y €I €€ IST 89'09LE 9¢ 96T 10°6Cl THOIT S¥'8S8 0T SY'I 10°EL STSL Bay

Sl 8¢ SCTO T9¢l Tl S€ Te0 STyl 91 LE TEO ¥STCT €e 0 vo'ee 8196 vovvc LI TE0 90°81 €687 91

ST Lg 9I'0 LI'Cl SI OF €STO +¥9°¢l Tl 6¢ STO BEeT 0¢ ¢ST0 ¢€€8l 66LC 68°0¢ Ic ¢T0 ¢€Tee 1799 8

8¢ 66 9I'0 S8CC 0C €S 6ST0 ¢CCcoc €I O 6STO ¢€¥e6e e S0 09°¢l 89LT 88'8C @ ST0 ¢S96l €I8L v

8¢ €9 9I'0 9¥'Ie 8C ¥8 STO S96C 61 S¥ STO €TIlv €e ST0 Loel VILT LI'LT ¥¢ 10 Tylc L6'88 I 699

8 LT LI'O 9I't TI 1€ 9I'0 ¥T€ ¢l 1T 91’0 9801 6C 910 0¢9 SvL e€re ST 910 I¥Yy Leve 91

¢l 9¢ 000 0SS ¢TI I 000 ¢€0°S IT LI 000 8SL 7 000 80% §9¢ 19°0 €l 000 99°¢ 8y 8

€l €€ 000 o6¥'S €1 0¢ 000 60°¢ ol ¥I 000 €69 91 000 L6°C ¢ 190 91 000 ¥E¥ 0s0S ¥

0c 0¢ 000 8¢9 €I ¥ 000 STS IT 0C 000 L¥8 81 000 ¢€I't ¢ 860 91 000 6S¥ €SS 1 699

¢ TS 00 oeevy 91 TS 190 €Ly LT 8¢ 080 HEBOVI S99 180 8FVYII 6L66 ¥SYLC 61 ¥LO 9I'8S 6196 91

0C 6F ¢€€0 oS6c 81 LS I¥'0 €96r SI vv 90 STPLel €€ 9¥0 6TSS ELITT 6§Tee 61 9¥0 1089 weL 8

9¢ €L €0 0018 ¥C ¥L I¥'0 9899 vI S 90 e¥¥9el 0S 9¥0 1€99 1S601 889C¢ CC 9¥'0 +VT8L wLe v

99 CL €€0 VLLL 8 9L 1¥'0 LEV8 ST Ly 9Y'0 96'SOVC CE 9¥'0 6¥9¢ ELCIT €00ee 9T 0SS0 €£08 os¥IT T 699

ss 31 dep nd) ss) dep ndy ss 3 dep ndy 3 dep nd) 1 ndy 3 dep nd) duy 5 |yl
SM=CMA,S CMd,S TMA;S A@onns Maagers ddd wopqold

panunuod | Jqe],

pringer

as

67

A stabilized structured Dantzig—Wolfe decomposition method

Ic oy ev’l 0eCc 61 95 10€ Sk 91 I¥ 8E€9 8E99Y T6 08'L S6LI T¥Se6 LceL S€ II'L €eCl 6¢'SS 91

oy ov ¢Sl 8e OF LS 19°€ 9P vI €€ 698 Seovl 19 ¥1'8 899 €8C66 LOL9 IS ITII L88T 6¢£'88 8

9 99 €91 TLEe S€ Ly 6S€ TLT T 8T SO'8 L8I9 8¢ 968 SLT 909911 TC98 95 LL'IT 6lI€ 8I'8IT

69 VL SS1 8L 99 6L ISE L8S €1 0€ sxxx 16L9 TY LL'8 69T 1€CCTl 8¢68 TS 10Tl 98I¢ S§TTS1 1 L8T

6¢ €S Or'r LS¢ 0¢ L9 TTT 9Ly LI Ly TE€8 T9S69 80l 66°L L9IE L6ILOT 89TL TS 6I'L 0061 6097 91

99 ¢8 ee’l I9L ¢F 0S5 SLT 89 ¥I 0€ 1901 Sovce 89 L8'8 LV91 LTLO¥I TOLOT ¥L 80l 00S6 1es8 8

S6 86 ¢l 06 89 08 L8T SSL ST ST €€0l 8¢9CI 6F 9¢'6 CI9 6L8LYI T16LIT 08 I88I LESST 6£°6CT +

S6 101 0€T <C6S IL 08 19T LSS ¥I 6T sxxx E€LIOI 6€ YL 08¢ €96cel 19¢6 98 €S°0C 9Te81 LI'S8T 1 6CC

@ €S 90T IS¢ LT Ty CI'C 6¥C 61 6£ I8L LSEEE 19 60°L 88¢l 09C901 8¥LL 6v L8'S 00¢l o6l'evr 91

6 ¥S 8C'l I8 0¢ Iv 69C Tve €1 Le OL9 ¢€LTel 1¥ LL'L OIS TSLOIT +¥¥88 9S CEL LI6C 608 8

8 9 11 Lec 8¢ LS 00€ 00 91 1€ 889 ++899 ¢ 8L 6Ic O9LI8IT ¥II8 LS 8ETI 86lE €6'0IT ¥

9¢ L9 STl T 0S T9 8LT 60 Tl ¥C LSL OLOv 1Y ¥6'L 1€C 861901 00IL 85 QST SSTE 66'LY1T 1 6CC

€L vII T0'1T ¥08 € 69 TI'T 66¢ 91 ¥S 176 €S8OI €L 06 0£9C TS6L6 1¥S9 ¥S 65°S 060C 8L’y 91

LL 66 0C'T Legl 19 8L €0'€ LZOI LI OF CTI'Ol 9TCe8 v¥ LT'0T €681 99LT91 T89CI L8 08'IC <TOS9I 19v8 8

81 9CI €Tl 09%1 L8 68 6LC 1601 SI 6C 0TOl 9¢eLe Sv 8G°€l LO8 ¥LI9IEl TEl6 16 OFST 6680 +vCIel ¥

611 6Cl T&1 LO6 €L 9L 9I'F 098 LI C¢ TI'Cl 099L1 V¥ 0s°0I S¢S I1T8¥SI 8PLIT 601 9I'8C 1806% L9°S0C 1 6CC

8¢ TS or'r v8 T¢ 09 LE€T TLE SI LE 8YL S9L8E SL SI'L ¢I8I ¥8CE8 G8LS 0SS 608 1S91 8987 91

oy LS 9¢’l I8¢ 9¢ 66 T0OC ¥k Tl 9T 6TL TWL6l LS 168 8L6 TeL6IT 8606 €9 T6'6 0S8% 6v'e8 8

69 €L 8€'T 99y Ty SS 60t CEE LI 9t TO'8 L6601 8S w6 Ivy SCOSIT 96L8 IL SS'€l 1999 61°LIT +

89 98 'L oese ¥9 IL OI'c evy Il ¥C SS8 OvvS ¢€F 6C'L 6LC 8SPLIT STS8 OL vo6'vl T¥89 65091 1 6CC

ss)N denp ndy ss)y denp ndy ss) dep nd) N den ndp N ndy I den nd) dur o |yl
M= MA .S Md,S TMA,S A@o_Is Magers dod wapqold

soour)suI a5Ie] J0J SINSAY ¢ dqEL,

pringer

as

A. Frangioni, B. Gendron

68

99 8L oF'rT 686 8% €S9 €'t 6¥S SI 9¢ TLOT S0Sve 9S LE6 €0l PEPSIT TH98 T9 90FI 96¢8 £9°801 Bay
oy ¢S Yl oSSy LT IS S8T 9¢y LI 8S TI'8 I8LEET 6S 658 9¢6l TPBEOl S¥69 PP 88 €EST 1cys 91
SS9 65T 089 0SS 99 V¥9'¢ 6SL LI S¥ TOVI €1988 09 86Tl 8LVI 6£S0ET 1166 19 9S°ST T€O8 1ILce 8
96 101 ¥L'T 6l6 09 IL 88¢ 989 €I OV ssxx LEVICT S9 PO'€El 6C8 €SLIST L90CI CL 06'ST SIOCI Iv'vel ¥
96 LOT L9'1T 6VL 16 L6 9L'¢ 80l €I 6¢€ €SCI 169SI S SI'el LLS 90IcCST ¢ovIl vL 1981 <T9I€l T8061 1 L8T
81 S¢ 8’1 S91 LI 0S 0T¢ L6C vI OF 889 ¢€¥I6T €L 969 0811 #9016 +¥SI19 v& LI'L 6¥v0I1 orss 91
6¢ LY IST LLT 1€ TS TTE OvE 91 8E ssxx ICIID 0OS 0c6 Sty 0€C06 SCI9 T 9¢'01 €CTLI 6998 8
65 99 §9'1 8c¢ 9¢ vr SSE O¥C vI S€ SEL 99IL ¥E €I'6 L0C 8YOLOI ¥E€CL 6% ¥vE8 I¥IC R4 4
€L 18 €91 Y0¥ 8 09 O9r'c 8pE €1 9¢ 60°L T68S SP 0€'L Ive S8TWOl 86¢L Ly €Il T80T Lyvrl 1 L8C
Sy 09 9Tl 666 ST 65 6T €IS LI ¥S 1101 L60OTET 66 906 SISE TL686 1089 ¥S 0911 6LSE sy'es 91
96 C0I €91 00l 0SS €L 89t 606 ¥I 6C I8I1 €OLIS 1Y 8€°0I Il 9¢S0El 86001 ¥9 8TST 9596 ¥6'C6 8
¥6 86 09T 168 6L 06 <cL'E€ 1001 SI LT 8L'E€l 8STI LE LOST €09 80¢TIl 9¢cv8 C9 CSCC tveoll L69Cl ¥
eyl 6Vl S9'1 LTel €6 86 C6't 6101 SI 6¢£ 1€91 6V60C €S PS'Cl 86§ ¥I90CI SI88 99 98°LC 6SSPI L8861 1 L8CT
ss)N denp ndy ss)y denp ndy ss 3 dep nd) N den nd) N ndy I den nd) dur o |yl
SM=MA,S Md;S CMA;S maonng maagers ddd wopqold
panunuod g Jqel,

pringer

as

69

A stabilized structured Dantzig—Wolfe decomposition method

LE 09 §9C yicy 8¢ 18 ¥9°C Ices ¥Sl L1rel L1€9C SS09¥C 90968 §9°¢6 Bay

61 99 0s¢C [84%3 ¥ S6 0€'C 09¢9 ¥81 SL'8 £068¢ 91c0LT 002101 0oL 91

IC 6S 144 £0ce 9 [1€c y1€9 91 0’6 0950T 6SL0ST L8S88 SI'e6 8

143 oF (994 §69¢C 1s 6L 9¢'C LIy 14! LT'8 986T1 08T £9¢EY6 1T°¢01 %

44 IL [4y4 10€Y €9 LL €6°C 9I¢y 0CI 69°8 611¢I 8YYEYT 66826 OI'ITI I 899

81 |87 S6'C YILE St €8 e 9798 9¢S1 s6’cl £9¢8¢6 S068LT 110€01 96°08 91

LE 19 8LC S9LS 9¢ L8 L9'C 09SL o€l LOTI 1L8LT 9£98ST 187701 €001 8

St 69 LOE 9059 €9 6L 66'C 99L9 9LI L6°01 L9S8C 029LYT 71066 6C°SI1 ¥

9¢ 69 10°¢ S189 8L L6 96°C S1c6 6¥1 68°11 ILLET c0L9YT 68L86 09¢l I 899

€C 9 e 161s 9 L9 e 439 9Ll 0591 LyyyL £9969¢ L9S€6 1€1L 91

9¢ LS 98'C 60y 09 ¢8 yi'e yees 6S1 81°81 09¥0¢ ¥889¢6C 81¥¢€6 [270 8

St 99 6l'¢c eLey 9 LL LS'T ey 1€l 8l oL6LT ¥680S¢ £LS06 [{UNAN! ¥

99 99 90°¢ 899 9L L8 Iee 118% 91 06'¥1 oycee ¥508S¢ §90£6 LOSTI 1 61¢

61 99 A4 (44! €€ 65 66’1 9¢91 ¢ Se9 Ll 6910TC €61SL w19 91

0¢ Ly 8°1 9Cl oy IL 06°1 6¥91 €91 L8V 0678 G8LLBI LLETY 8L 8

[43 €S LL'T Ivel |87 09 L8] 0zel S0¢ 9 L0T8 £€L881 11609 LL'T8 ¥

[43 6F 1671 61l 43 €9 61'C [4:14! 8¢1 SL'S €SIS 9¢€8L8I ers19 76°88 I 61¢

vC €9 6C'¢ 7008 43 L 00°¢ SYe8 68 ¥0°0¢ 05009 LY60¥C LELT6 L9EL 91

6% SL €0'¢ 7068 YL €01 00°¢ 02001 091 LS0C 819LY 8TLELT £L8S6 617101 8

6S SL LO'E CCLL ¥6 811 LI'E 10111 1cl Se8l 1696¢ ¥$L99¢ L90£01 oF'1¢l ¥

L9 08 6£'¢ 9LSL Y6 LO1 e 17L8 8! 1781 Soric S¥9L9T 06856 POyl I 61¢

€C 8¢S 9T'C 0LST 6¢ LL 99°'C €0ve wi 9C01 L198¢€ SY68¢€T ¥8€68 £6°69 91

0¢ 43 0€'C €181 97 99 Sv'e 8€ET eVl LY'8 €I911 99¢8S¢ 81688 91'C8 8

144 99 9¢°C L8YT 7S 89 €€'T oric orl STI1 L806 Y98LYT 1€088 ¥5°76 ¥

8¢ €S 1€¢C LS81 99 9L €CT ELYT LST 96°6 6£86 IYL8YT S69L8 £8°001 I 61S

ss b | den nd) ss N den nd) b | den nd) b | nd) duy o) 4
SO MALS Md;S M@d_IS Magers weqold

sooue)IsuI 95Ny J10J SINSAY € IR,

pringer

as

70 A. Frangioni, B. Gendron

1 : : : : : —— 1

XK ¥
F¥5000000000 H
Al KK KR !
™" 1 08
5
KX %R -X-X- % 3% H H
e 1 0.6 %
exX E:
x 3
XX
=X
[PRVEVEVIVINENG
4 1 0.4
sg 021
e
B4
Ba 8
L L L L L | 0
3 4 5 6 7 8 1
PCP —+— S2DW2 a
StabDW ——-x--- S2DWinf e

StructDW % S2DWinf-ws2 --o-

Fig. 3 CPU performance profiles for medium (leff) and large (right) instances

discernible already for the “hard” medium instances, reveals itself for PCP: the
approach is significantly faster for large C than for small C, with the ratio between
C = land C = 16reaching almost 25 in one case. Thus, while StructDW is faster than
PCP for C = 1, typically by more than an order of magnitude, PCP wins in a few cases
for C = 16, although at most by 50 %. A similar trend is observed for gaps: StructDW
is better (often considerably so) for C < 8, while in a few cases PCP attains a better
gap for C = 16. The quadratic S’DW now outperforms all other approaches in terms
of iteration count; however, the cost of solving the quadratic master problem with
CPLEX attains intolerable levels. Furthermore, the gaps are not quite as good as those
of the linearly stabilized versions; in particular, in four cases (marked with “****” in
the Table), no feasible solution at all was found. Here, the linear S2DW outperforms
the competition: only the non-stabilized SDW is faster for small C, but S’DW is much
less affected by the growth of C (actually, most often than not it behaves better for
large C than for small ones), being a factor of two faster on average. Furthermore,
the gap is substantially smaller than for both StructDW and PCP, irrespective of C.
Again, the two-level warm-start has an erratic effect on running times, resulting in
a very close average, but halves the gap when compared to the already surprisingly
good result of the standard warm-start; this results in an average gap of 1.4 %, which
is a full order of magnitude less than the 14 % gap obtained by PCP.

For huge instances (Table 3), we did not compute results for PCP and S2DW,, asitis
clear from the previous data that they have no hope to be competitive (for PCP, this had
already been shown in [21] when comparing it to StructDW alone). The stabilized DW
requires around 250,000 iterations to converge, ending up being the slowest in all cases.
The non-stabilized SDW suffers from the same dramatic performance decline as C
grows, making even the stabilized DW on the original cutting-plane model competitive
for C = 16. However, S2DW is much more efficient in time, up to over one order of
magnitude, and still delivers much smaller gaps. The two-level warm-start does not
have the same uniform effect on gaps as for the medium and large instances, ending

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 71

Fig. 4 CPU performance 1 reecss # ® ® ® ® %8,
rofiles for huge instances P 2
P g l)(—)(
¥ Fataiaiaraiatd
0.8 1% FORHARAAHK B
r X
/X)
¥
06 / 1
i XXX
0.4 f i 1
| {
02t K
X
<
0 I Il Il Il

1 3 5 7 9
StabDW —+— S2DWinf B
StructDW --->x--- S2DWinf-ws2 8

up with very close results; however, the effect on running times is more noticeable,
with a reduction between 20 and 50 % being the most common outcome.

The results in the previous tables are summarized in the performance profiles (over
CPU times) of the different algorithms shown in Fig. 3 for medium and large instances
and in Fig. 4 for huge instances.

These results confirm that using “even more disaggregated” models is typically
very beneficial: like moving from aggregated to disaggregated cutting-plane models
[3,9,25], the larger model of the SDW approach provides a much faster rate of conver-
gence. For loosely capacitated medium-to-large-scale instances, not stabilizing may be
the best choice; this has been reported before for column generation [6]. However, for
more tightly capacitated instances, especially as the size grows, stabilization becomes
instrumental, provided that care is exercised in choosing the right stabilizing term. The
effect on the gap is also noteworthy, since it suggests that stabilization seems capable
of helping the SDW approach to select “just the right parts” of the huge model, not only
in terms of the solution of the LP relaxation, but also in terms of the integer solution.
Exactly why this capability does not appear to be shared by the quadratically-stabilized
version, that is otherwise clearly superior in terms of convergence speed, is not clear
to us at this point in time, although one may speculate that the linear stabilization “is
a lesser change” to the original linear objective function of the master problem. Thus,
stabilization not only improves lower bound computation times, but it also appears—
at least in this application—useful for constructing actual solutions of the original
MILP. Since the non-stabilized SDW approach is a special case of the stabilized one
with an “infinitely weak” stabilization term, it is arguably convenient to approach any
potential new application with a “stabilize first, ask questions later” strategy.

6 Conclusions and future research

We have analyzed and implemented an extension of the Dantzig—Wolfe decomposi-
tion method which exploits the structure of the pricing problem, i.e., the existence of

@ Springer

72 A. Frangioni, B. Gendron

a reformulation of the latter amenable to a column generation procedure. The SDW
approach has similar convergence properties to the original DW approach; further-
more, the subproblem that has to be solved in the two algorithms is the same—only
the master problem changes—and therefore only limited modifications to existing
DW approaches are required to implement SDW methods. The SDW method can be
stabilized exactly like the original DW approach, leading to the stabilized structured
Dantzig—Wolfe method (SZDW); the convergence theory of [19] can be extended to
the new approach, providing a reasonably complete picture about what stabilizing
terms can be used, how the proximal parameter ¢ and the “bundle” B can be handled,
and so on. We have tested the S>DW approach on the multicommodity capacitated
network design problem, obtaining quite encouraging results against a large set of
possible alternative approaches providing the same (strong) lower bound.

As far as future developments go, it will be interesting to test more applications
of the S’DW approach. For instance, the well-known Gilmore-Gomory formulation
of the cutting stock problem [8] is usually solved by DW approaches; there, X is the
set of all valid cutting patterns, that is, all feasible solutions to an integer knapsack
problem. Owing to the well-known reformulation of integer knapsack problems in
terms of longest path problems on a directed acyclic network, one can devise the arc-
Sflow model of the cutting stock problem [5], that provides the same lower bound at
the cost of a pseudo-polynomial number of variables (one for each arc in the graph
representing the knapsack) and constraints (one for each node in the same graph).
The arc-flow model provides the alternative reformulation of Assumption 1, and each
feasible cutting pattern is a path in the directed graph underlying the arc-flow model;
thus, one can easily devise a restricted formulation Xz corresponding to a (small)
sub-graph of the (large) full directed graph. It will be interesting to verify if the new
approach is competitive with existing solution methods, in this application or others.
The implementation we tested is also rather naive in terms of the handling of ¢ (fixed)
and of B (no removals, no aggregation); finding appropriate rules for these important
aspects has the potential to further substantially improve the computational behavior
of the approach.

Acknowledgments We are grateful to the anonymous referees for their valuable comments which helped
us to significantly improve the contents of the paper, and to K. Kiwiel for pointing out a flaw in the analysis
of [19] (see the Appendix). We are grateful to Serge Bisaillon for his help with implementing and testing the
algorithms. We also gratefully acknowledge financial support for this project provided by NSERC (Canada)
and by the GNAMPA section of INDAM (Italy).

Appendix: Proof of the convergence results

We now rapidly sketch convergence results for the S>DW method, focusing only on
certain aspects where the theory of [19] cannot be directly used due to the above
mentioned somewhat weaker assumptions on the update of the model. The standing
hypotheses here are (i)—(vi), a monotone and safe B-strategy, and, at least initially,
that X is compact. A basic quantity in the analysis is

Af = (@) — f(@) =0,

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 73

i.e., the “approximation error” of the model fi with respect to the true function f in
the tentative point 7. It can be shown that if Af = 0, then 7 and (X, z) are the optimal
solutions to the “exact” stabilized problems

max, {f(7) — Di(r —)}
min, ¢ {cx — 72+ Dj(—2) : z=Ax —b, x € conv(X)} (35)

(with fg = f, X = conv(X)), respectively [19, Lemma 2.2]. This means that 7 is
the best possible tentative point, in terms of improvement of the function value, that
we can ever obtain unless we change either # or 77; in fact, it is immediate to realize
that if Af = 0, then the “sufficient ascent” condition (31) surely holds. The “inherent
finiteness” of our dual function f allows us to prove that this has to happen, eventually,
provided that B is not “treated too badly”.

Lemma 2 Assume that an asymptotically blocked B-strategy is employed, i.e., for
any sequence of NSs, at length removals from the bundle B are inhibited; then, after
finitely many NSs, either a SS is performed, or the algorithm stops.

Proof By contradiction, assume that there exists a sequence of infinitely many con-
secutive NSs (i.e., the algorithm never stops and no SS is done). If an asymptot-
ically blocked B-strategy is employed, during an infinite sequence of consecutive
NSs, one has that (31) is (at length, see iii) never satisfied, and this clearly implies
f(@) < fp(r). But, at length, ¢ is fixed by (v), removals from B are inhibited, no
aggregated pieces can be created because the S-strategy is safe, and at least one item
is added to B at every iteration by (iv); thus, I3 grows infinitely large, contradicting
finiteness in Assumption 1. O

Under the stronger version of Assumption 3 where X € Xp, this result could be
strengthened to allow reducing the size of 3 down to any predetermined value. This
first requires the further assumption that D; is strictly convex (equivalently, D} is
differentiable), that is satisfied e.g. by the classic D; = %H . ||% but not by other
useful stabilizing terms (cf. e.g. [6]). Then, under the mere monotone J-strategy
one can use [19, Lemma 5.6] to prove that the sequence {Z;} is bounded, and then
[19, Theorem 5.7] to prove that the optimal value v (29) of the stabilized primal mas-
ter problem is actually strictly decreasing; since m and (at length) ¢ are fixed, this
means that no two iterations can have the same 3, but the total number of possible
different bundles B3 is finite. A weaker version (that is sufficient in practice) showing
that v (29) — O even if infinitely many aggregations are performed is also possible: one
could then resort to employing the “poorman cutting-plane model” f; (cf. Sect. 4.1)
at all steps, which basically makes the algorithm a subgradient-type approach with
deflection [4,13] and results in much slower convergence [10,23]. Thus, this kind of
development seems to be of little interest in our case. Instead, the strictly monotone
B-strategy [19, Definition 4.8], which simply requires suspending removals from
B until v(29) strictly decreases, is likely to be an effective way to reduce the size
of B while ensuring the asymptotically blocked property.

Theorem S Under the assumptions of Lemma 2, the sequence { f (7;)} converges to
the optimal value of (3) (possibly +00). If (3) is bounded above, then a subsequence

@ Springer

74 A. Frangioni, B. Gendron

of {X;} converges to an optimal solution of (1). If. furthermore, m = 1 then the S>DW
algorithm finitely terminates.

Proof The standing assumption of [19, Sect. 6], i.e., that either the algorithm finitely
stops with an optimal solution or infinitely many SSs are performed, is guaranteed
by Lemma 2. The fundamental observation is that both f and fg, being value func-
tions of linear programs, are polyhedral. Then, the first statement is [19, Theorem
6.4] (being a polyhedral function, f is *-compact). The second statement comes from
[19, Theorem 6.2], which proves that the sequence {z;} converges to 0; then, com-
pactness of X implies that a convergent subsequence exists. The third statement is
[19, Theorem 6.6]. Note that the latter uses [19, Lemma 6.5], which apparently requires
that f be the cutting-plane model. However, this is not actually the case: the required
property is that fz be a polyhedral function, and that there exists a “large enough” B
such that fg = f, which clearly happens here. O

The assumption that ¢ is bounded away from zero can be relaxed somewhat if
D, = (1/t)D for some D satisfying (i) and (ii). It may be useful to remark here that,
as correctly pointed out by K. Kiwiel in a private communication, there is a flaw in
the treatment of this point in [19]. In particular, the alternative to t; > ¢ > 0 proposed
there is Zi oo li =00 [19, (6.2)]; that assumption does not guarantee that the whole
sequence {z;} converges to 0, but only existence of a converging subsequence. As a
consequence, in the hypothesis of Theorem 6.3 one should replace the “asymptotic
complementary slackness” condition lim inf; _, o Z;7; = 0 with the stronger condition
that Z;, 77;, — 0O for some subsequence {z;, } — 0 (which do exist under [19, (6.2)]),
or more simply that liminf;_, o, max{||z;||, z;w;} = 0. Nonetheless, proof of [19,
Theorem 6.4]—which is of interest here—only requires convergence of a subsequence,
and is therefore valid under the weaker assumption [19, (6.2)].

Note that setting m = 1 as required by Theorem 5 to attain finite convergence
may come at a cost in practice. In fact, this turns the S?’DW method into a “pure
proximal point” approach, where the “abstract” stabilized problems (35) have to be
solved to optimality before 77 can be updated (it is easy to check that with m = 1
a SS can only be performed when Af = 0). This is most often not the best choice,
computationally [6], and for good reasons. The issue is mostly theoretical; in practice,
finite convergence is very likely even for m < 1. Furthermore, as observed in the
comments to [19, Theorem 6.6], the requirement can be significantly weakened; what
is really necessary is to ensure that only finitely many consecutive SSs are performed
with Af > 0. Thus, it is possible to use any m < 1, provided that some mechanism
(such as setting m = 1 after a while) ensures that sooner or later a SS with Af = 0is
performed; once this happens (being m = 1 or not), the mechanism can be reset and
m can be set back to a value smaller than 1.

The extension to the case where X is not compact is relatively straightforward.
Stabilization (with the appropriate assumptions) considerably helps in ensuring that
the master problems attain optimal solutions even if their feasible regions (in partic-
ular, Xg) are unbounded. Then, as long as f(7) > —oo Assumption 3 is enough to
ensure convergence. If f (1) = —oo instead, one has to assume that the solution of (2)
produces a feasible solution x and an unbounded descent direction v for conv(X) as
a “certificate of unboundedness”. Now, because clearly fg(7) > —oo = f(7),

@ Springer

A stabilized structured Dantzig—Wolfe decomposition method 75

the algorithm cannot be stopped; furthermore, it cannot be that the half-line
{x = x + av, @ > 0} is entirely contained in Xg. Then, “some variables must be
missing”: as in the finite case, it must be easy to update B and the associated I, y5
and Cgtoa B’ O Bsuchthatthereexistsa B” D B’ such that v is an unbounded descent
direction for Xpg». Once this assumption is satisfied, the theoretical analysis hardly
changes. One may loose the second point of Theorem 5 (asymptotic convergence of
{xi}), but this is of no concern here; finite convergence basically only relies on the fact
that the total number of possible different bundles B is finite, so we basically only need
to ensure that the same triplet (B, 77,) is never repeated. The fact that conv(X) (=
some variables 6 in its definition) may not be bounded has no impact, provided that
the “set of pieces out of which the formulation of conv(X) is constructed” is finite.

References

1. Alvelos, E,, Valério de Carvalho, J.M.: An extended model and a column generation algorithm for the
planar multicommodity flow problem. Networks 50(1), 3—-16 (2007)

2. Atamtiirk, A., Rajan, D.: On splittable and unsplittable flow capacitated network design arc-set poly-
hedra. Math. Program. 92, 315-333 (2002)

3. Bacaud, L., Lemaréchal, C., Renaud, A., Sagastizdbal, C.: Bundle methods in stochastic optimal power
management: a disaggregated approach using preconditioners. Comput. Optim. Appl. 20, 227-244
(2001)

4. Bahiense, L., Maculan, N., Sagastizdbal, C.: The volume algorithm revisited: relation with bundle
methods. Math. Program. 94(1), 41-70 (2002)

5. Belov, G., Scheithauer, G., Alves, C., Valério de Carvalho, J.M.: Gomory cuts from a position-indexed
formulation of 1D stock cutting. In: Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., Strangmeier,
R. (eds.) Intelligent Decision Support: Current Challenges and Approaches, pp. 3—14. Gabler (2008)

6. Ben Amor, H., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column
generation. Discret. Appl. Math. 157(6), 1167-1184 (2009)

7. Ben Amor, H., Desrosiers, J. Valério de Carvalho, J.M.: Dual-optimal inequalities for stabilized column
generation. Oper. Res. 54(3), 454—4634 (2006)

8. Ben Amor, H., Valério de Carvalho, J.M.: Cutting stock problems. In: Desrosiers, J., Desaulniers, G.,
Solomon, M.M. (eds.) Column Generation, pp. 131-161. Springer, Berlin (2005)

9. Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.A.: Lagrangian Heuristics based on disaggregated
bundle methods for hydrothermal unit commitment. IEEE Trans. Power Syst. 18(1), 313-323 (2003)

10. Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capac-
itated fixed charge network design problems. Discret. Appl. Math. 112, 73-99 (2001)

11. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for
non-convex piecewise linear cost minimization problems. Manag. Sci. 49, 1268-1273 (2003)

12. Croxton, K.L., Gendron, B., Magnanti, T.L.: Variable disaggregation in network flow problems with
piecewise linear costs. Oper. Res. 55, 146-157 (2007)

13. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient
methods. STAM J. Optim. 20(1), 357-386 (2009)

14. Dantzig, G.B., Wolfe, P.: The decomposition principle for linear programs. Oper. Res. 8, 101-111
(1960)

15. Elhallaoui, I., Desaulniers, G., Metrane, A., Soumis, F.: Bi-dynamic constraint aggregation and sub-
problem reduction. Comput. Oper. Res. 35(5), 1713-1724 (2008)

16. Ford, L.R., Fulkerson, D.R.: A suggested computation for maximal multicommodity network flows.
Manag. Sci. 5, 79-101 (1958)

17. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms.
Comput. Oper. Res. 21, 1099-1118 (1996)

18. Frangioni, A.: Dual-Ascent Methods and Multicommodity Flow Problems. PhD thesis, TD 5/97,
Dipartimento di Informatica, Universita di Pisa, Pisa (1997)

19. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117-156 (2002)

@ Springer

76

A. Frangioni, B. Gendron

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Frangioni, A.: About Lagrangian methods in integer optimization. Ann. Oper. Res. 139, 163-193
(2005)

Frangioni, A., Gendron, B.: 0-1 reformulations of the multicommodity capacitated network design
problem. Discret. Appl. Math. 157(6), 1229-1241 (2009)

Frangioni, A., Gentile, C., Lacalandra, F.: Solving unit commitment problems with general ramp
contraints. Int. J. Electr. Power Energy Syst. 30, 316-326 (2008)

Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope.
Math. Program. 104(2-3), 375-388 (2005)

Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms volume 306 of
Grundlehren Math. Wiss. Springer, New York (1993)

Jones, K.L., Lustig, I.J., Farwolden, J.M., Powell, W.B.: Multicommodity Network flows: the impact
of formulation on decomposition. Math. Program. 62, 95-117 (1993)

Kiwiel, K., Lemaréchal, C.: An inexact bundle variant suited to column generation. Math. Program.
118, 177-206 (2009)

Lemaréchal, C.: Lagrangian relaxation. In: Jiinger, M., Naddef, D. (eds.) Computational Combinatorial
Optimization, pp. 115-160. Springer, Heidelberg (2001)

Magnanti, T.L., Mirchandani, P., Vachani, R.: The convex hull of two core capacitated network design
problems. Math. Program. 60, 233-250 (1993)

Petersen, B., Jepsen, M.K.: Partial path column generation for the vehicle routing problem with time
windows. In: Bigi, G., Frangioni, A., Scutella, M.G. (eds). Proceedings of the 4th International Network
Optimization Conference (INOC2009), pages paper TB4-3 (2009)

Vanderbeck, F.: On Dantzig-Wolfe decomposition in integer programming and ways to perform branch-
ing in a branch-and-price algorithm. Oper. Res. 48(1), 111-128 (2000)

Villeneuve, D., Desrosiers, J., Liibbecke, M.E., Soumis, F.: On compact formulations for integer
programs solved by column generation. Ann. Oper. Res. 139, 375-388 (2005)

@ Springer

	A stabilized structured Dantzig--Wolfe decomposition method
	Abstract
	1 Introduction
	2 Decomposition for multicommodity capacitated network design
	2.1 Dantzig--Wolfe decomposition
	2.2 Disaggregated Dantzig--Wolfe decomposition
	2.3 Binary reformulation and ``Structured Decomposition''

	3 The structured Dantzig--Wolfe decomposition method
	4 Stabilizing structured Dantzig--Wolfe decomposition
	4.1 Convergence conditions
	4.2 Choice of the stabilizing terms

	5 Computational experiments
	5.1 Residual capacity inequalities
	5.2 Summary of algorithmic approaches
	5.3 Computational results

	6 Conclusions and future research
	Acknowledgments
	Appendix: Proof of the convergence results
	References

